İNTEGRAL etiketine sahip kayıtlar gösteriliyor. Tüm kayıtları göster
İNTEGRAL etiketine sahip kayıtlar gösteriliyor. Tüm kayıtları göster

Bu Problemleri Çözen Zengin Olacak






Bu Problemleri çözen zengin olacak 

ABD'deki Clay Mathematics Institute (CMI) adlı kuruluş, 20. yüzyıla ait çözülememiş dev problemler olarak nitelediği 7 matematik probleminin her birinin çözümüne bir milyon dolar (yaklaşık 621 milyar TL) ödül koydu. 7 problemi de çözen şanslı zeki tam 4 trilyon 347 milyar liranın sahibi olacak. Ödül haberi, 500 matematikçi ve fizikçinin Paris'te bir araya geldiği College de France'ta, 'Binyılın Buluşması'nda açıklandı. Çözümüne 1 milyon dolar verilecek problemlerin başında, asal sayıların neden sadece 1'e ve kendisine bölündüğüne ilişkin Riemann Hipotezi geliyor. Riemann Hipotezi'nin çözümü, uygulamada, daha güvenli internet hizmetlerine yarayabilecek.
'Matematiğin Everest Dağı' olarak adlandırılan 7 problem çözümlenemeseler bile 'çok önemli yan etkiler' yapacaklar. Problemlerin çözümü için zaman sınırlaması bulunmuyor. Yarışmayı düzenleyen CMI kuruluşunun kuralına göre, çözümler, uluslararası saygınlığı olan bir matematik dergisinde yayımlandıktan sonra iki yıl beklenmesini ve dünya matematik uzmanlarının çözümü kabul etmeleriyle son değerlendirmeyi CMI kuruluşunun yapması öngürülüyor.

Çözümlenmesi istenen problemler şöyle sıralanıyor:
1) Riemann Varsayımı

 2) Poincare Önermesi 
3) Hodge Önermesi
4) Birch ile Swinnerton-Dyer Önermesi
5) Navier-Stokes Denklemleri 
6) Yang-Mills Kuramı
7) P, NP'ye Karşı Problemi




TEMEL İNTEGRAL ALMA FORMÜLLERİ


TEMEL İNTEGRAL ALMA FORMÜLLERİ


1)             ſ a dx = ax + C    ,     (a Є R )
2)             ſ xⁿ dx = (xⁿ ¹/n+1) + C     ,        (n = -1)
3)             ſ ( 1/x) dx = ln |x| +C
4)             ſ eª da = eª + C
5)             ſ eª da = (eª / ln e) + C ,         (a Є R’ –{1})
6)             ſ sinx dx = -cosx + C
7)             ſ cosx dx = -sinx + C
8)             ſ (1 / cos²x) dx = ſ(1+tan²x) dx =ſsec²x dx = tanx + C
9)             ſ (1 / sin²x) dx = ſ (1+cot²x) dx = ſcosec²x dx = -cotx + C
10)         ſ (1 /      1 - x²      ) dx = arc sinx + C = -arc cosx + C
11)         ſ( 1 / 1+x² ) dx = arc tanx + C = -arc cotx + C

Yukarıdaki eşitliklerin doğruluğunu gösterebilmek için, sağ taraftaki fonksiyonların türevlerini alarak, integrali alınan fonksiyonu elde ederiz.


İNTEGRAL ALMA YÖNTEMLERİ

İntegrali alınacak fonksiyonun, hangi fonksiyonun türevi olduğunu görmek, her zaman pek mümkün olmaz. Bunun için, bazı integral alma yöntemleri oluşturulmuştur.

1. DEĞİŞKEN DEĞİŞTİRME YÖNTEMİ
f,   g,  fog  ve  g’  fonksiyonları, bir [a, b] aralığında sürekli fonksiyonlar olsun
                 
                                  ſ f(g(x)).g’(x) dx

biçimindeki integralleri hesaplamak için,  u = g(x)  dönüşümü yapılır ve her iki tarafın diferansiyeli alınırsa,  du = g’(x) dx  elde edilir. Bu durumda integral,

                                 ſf(g)).g’(x) = ſ f(u) du

biçimine dönüşür. ſ f(u) du ifadesinin,  u  değişkenine göre integrali alındıktan sonra,  u  yerine g(x) yazılarak, sonuç x değişkenine göre bulunmuş olur.

* ſ [f(x)]ⁿ . f’8x) dx  ifadesinde olduğu gibi, kuvveti alınan fonksiyonun türevini aldığımızda, yanındaki çarpanı elde edebiliyorsak, bu ifadenin integralini kısaca;
                
               ſ[f(x)]ⁿ . f’(x) dx = {[f(x)]ⁿ´¹ / n+1} + C              (n = -1)
biçiminde alabiliriz.


LOGARİTMİK VE ÜSTEL İNTEGRAL ALMA KURALLARI:

1.       ſ {f´(x) / f (x) = ln |f (x)| + C
2.       ſ eª . f´(x) dx = eª + C                   ( a = f(x))
3.       ſ eª . f´(x) dx = {eª / ln e} + C             (a = f(x))

Bu eşitliklerin, sağ tarafındaki ifadelerin türevlari alındığında, integrali alınacak ifade elde edilir.

BAZI TRİGONOMETRİK İFADELERİN İNTEGRALLERİ

1.       ſ sin(f(x)) . f´(x) dx  = -cos f(x) + C
2.       ſ cos (f(x)) . f’(x) dx = sin f(x) + C
3.       ſ{f’(x) / cos²f(x)} dx = tan f(x) + C
4.       ſ{f’(x) / sin²f(x)} dx = -cot f(x) + C
5.       ſsin(ax + b) dx = (-1 / a) cos(ax + b) + C         (a = 0)
6.       ſcos(ax + b) dx = (1 / a) sin(ax + b) + C         (a = 0)
7.       ſ{dx / cos²(ax + b) dx = (1 / a) tan (ax + b) + C   (a = 0)
8.       ſ{dx / sin²(ax + b) dx = (-1 / a) cot (ax + b) + C   (a = 0)
9.       ſcot (ax + b) dx = ſ{cos (ax + b) / sin (ax + b) dx = (1 / a) ln |sin(ax + b)| + C

Yukarıdaki eşitliklerde, sağ taraftaki fonksiyonların türevlvri alındığında, integrali alınan fonksiyon elde edilir.

2 KISMİ (PARÇALI) İNTEGRASYON YÖNTEMİ

İki fonksiyonun çarpımının integralinin hesaplanmasında genelde, kısmi integrasyon yöntemi kullanılır. u ve v fonksiyonları, bir (a,b) aralığında türevlene bilen fonksiyonlar ise, u, v fonksiyonu da (a, b) aralığında türevlidir.

              {(d / dx)(u . v)} = {(du v / dx) + (dv u / dx) olduğundan,

                           d(u . v) = v du + u dv   ve
                       u dv = d(u . v) – v du         olur.
Bu eşitliğin her iki yanının integralini alırsak;
                         ſ u dv = u . v - ſ v du            olur.
Bu yöntemle integral almaya, kısmi integrasyon yöntemi denir.


3 BASİT KESİRLERE AYIRMA YÖNTEMİYLE İNTEGRAL ALMA

P(x) ve  Q(x) birer polinom olmak üzere, {P(x) / Q(x)}, (Q(x) = 0) biçimindeki fonksiyonlar, rasyonel fonksiyonlardır. Basit kesirlerine ayrılabilen rasyonel fonksiyonların integralleri şu şekilde bulunur:

a, b, c, A, B Є R ve n Є N olsun.   (A / (ax + b)ⁿ) ve Δ< 0 olmak üzere,  
{Ax + B / (ax² + bx + c)ⁿ biçimindeki ifadelere basit kesir denir. {P(x) / Q(x)}rasyonel ifadesi, basit kesirlerin tplamı biçiminde yazılabiliyorsa, yapılan işleme; basit kesirlere ayırma denir.
Rasyonel ifadelerin integralinin hesaplanmasında 2 yöntem vardır.

A.       P(x) in Derecesi, Q(x) in Derecesinden Küçük ise
  Bu durumda, aşağıdaki yollar izlenir:
a) {P(x) / Q(x)) rasyonel ifadesinin paydası olan Q(x),
Q(x) = (a x + b )(a x + b)…(a x + b) biçiminde r tane çarpandan oluşuyorsa, bu ifade:
{P(x) / Q(x)} = {A / a x + b} + {A / a x + b}+….+{A / a x +b} şeklinde basit kesirlerin toplamı olarak yazılır. Polinomların eşitliğinden yararlanılarak; A  , A , ….., A  değerleri bulunur ve sonrada integral alınır.

B.       P(x) in Derecesi, Q(x) in Derecesinden büyük veya eşit ise
Bu durumda, P(x) polinomu Q(x) polinomuna bölünür. P(x) in Q(x) e bölünmesinden bulunan bölüm B(x) ve kalan K(x) ise,
{P(x) / Q(x)} = B(x) + {K(x) / Q(x)} biçiminde yazılır ve bu ifadenin integrali alınınr.

TRİGONOMETRİK ÖZDEŞLİKLER YARDIMIYLA İNTEGRAL ALMA
Bazı trigonometrik ifadelerin integralleri alınırken, ayşağıda verilen trigonometrik özdeşliklerden yararlanılır.

1. sin²x +cos²x = 1          sin²x = 1 -cos²x      veya     cos²x = 1 -sin²x    tir.

2. sin2x = 2sinx . cosx            sinx . cosx  = (sin2x / 2)      dir.

3. cos2x = cos²x – sin²x   veya   cos2x = 2cos²x – 1         cos²x  = {1+cos2x / 2}  veya

      cos2x = 1 – 2sin²x          sin²x = {1 – cos2x / 2 }      dir.

n Tek Doğal Sayı ise ſ sinⁿx dx  veya  ſ cosⁿx dx  Biçiminde Verilen İntegralleri Hesaplama

ſ sinⁿ dx = ſ sin־¹x .sinx dx        veya       ſ cosⁿ dx = ſ cos־¹x .cosx dx     biçiminde yazılır. Daha sonra,      sin²x = 1 - cos²x   veya       cos²x = sin²x   özdeşlikleri yazılarak integral alınır.

n Çift Doğal Sayı ise ſsinⁿ dx    veya   ſ cosⁿx dx Biçiminde Verilen İntegrallerin Hesaplanması

ſsinⁿx dx = ſ(sin²x)ⁿ´² dx           veya     ſcosⁿx dx = ſ(cos²x)ⁿ´² dx          yazılır.
Daha sonra, sin²x = (1 – cos2x / 2)     veya   cos²x = (1 + cos2x / 2) özdeşlikleri yazılarak integrali alınır.