ATOM etiketine sahip kayıtlar gösteriliyor. Tüm kayıtları göster
ATOM etiketine sahip kayıtlar gösteriliyor. Tüm kayıtları göster

Fiziğin tarihsel gelişimi

  Doğa olayların sorgulanmaya başlaması, yani fiziğin doğuşu, ilk uygarlıklann ortaya çıkmasıyla birlikte oldu...
                           
F iziğin tarisel gelişimine bakıldığında çok eskiden, Mezopotamya'da IÖ 3000'lerde, Sümer ve Akad
uygarlıklannda
su değirmenleri kullanılıyor, ağır heykeller dikiliyor,

piramitler yapılıyor, zaman, uzaklık ve hız ölçümleri gerçekleştirilebiliyordu. İÖ 2500'den sonra

Eski Mısır'daki uygarlıklar da, pratik kaygılan ağır basan mühendislik sorunlarının çözümünde fizik kurallanndan yararlanmışlardı.

Ama bu pratik gereksinmelerden doğan tekniklerin ortak temellerini oluşturan ilkelerin aranışı, İÖ 6. ve 5. yüzyıllarda Ege kıyılannda yaşayan filozofların soyutlamalarla doğayı sorgulama yöntemlerinde ortaya çıktı: Bu dünya, kaostan nasıl doğdu? Çokluğun ve çeşitliliğin kökenleri nedir? Hareket ve değişim nasıl hesaplanabilir? Bazı temel kabullerden mantıksal olarak sistematik fizik kuramlan çıkarsamanın ilk örneği, Thales'in (İÖ 6. yy) suyu tüm varhklann temel maddesi saymasıdır. Tha-les, iki temel kuvvet olarak, büzülmeye yol açan merkezcil kuvvet ile genişlemeye yol açan merkezkaç kuvveti tanımladı.

Antik Çağ filozoflanndan

Herakleitos (İÖ y. 540 - y. 480), bütün nesnelerin sürekli hareket halinde olduğunu ve toplam madde miktarının sabit olduğunu öne sürerken,



Empedokles (İÖ y. 490 - 430), evrenin toprak, hava, ateş ve su dörtlüsünden oluştuğu görüşünü ortaya attı. Atom kavramının babası ise Anaksagoras (İÖ y. 500 - y. 428) oldu.

Anaksagoras, tüm maddenin, "yaşamın tohumlan" olarak adlandırdığı atomlardan oluştuğunu, bunlann sürekli hareket ettiğini, havanın bir ağırlığı olduğunu belirtti.

Demokritos (İÖ y. 460 - y. 370),

atom kuramına "zorunluluk" ilkesini katarken, Leukippos (İÖ 5. yy) ve Epikuros (İÖ 341-270) atomcu okulun izleyicileri oldular.


Platon'un öğrencisi

Aristoteles, atom görüşünü yadsıyarak nicel madde kuramı yerine oldukça yalınkat ve nitel bir yaklaşımı yeğledi. Aristoteles, ilkel maddeyi sıcak ve soğuk, ıslak ve kuru gibi niteliklere indirgedi. Dirençli bir ortamda bir cismin hareketinin, harekete yol açan kuvvetle orantılı, ortamın direnciyle ters orantılı olduğunu belirleyerek bu bağıntıyı boşluğun varoluşuna karşı bir kanıt olarak kullandı. Aristoteles'in fiziği tüm ortaçağı etkiledi ve hatta

Aquino'lu Tommaso tarafından Hıristiyan skolastiğinde kullanıldı.Syrakusa'lı

Arkhimedes (İÖ y. 290/280 -y. 212/211), İskenderiyeli Heron (ü. İS 62), Ktesibios (ü. İÖ y. 270) gibi araştmcılar ise deneysel araştırmalarıyla hidrostatik, mekanik gibi fizik dallarına önemli katkılarda bulundular.


İlkçağ filozoflarından Aristoteles'in düşünceleri, ortaçağdaki dünya görüşlerinin tümü üzerinde etkinliğini sürdürdü. Bilimin, felsefe ve dinin etkilerinden sıyrılıp kendine özgü bir araştırma disiplinine dönüşmesi eski çağdan hemen hemen 2 bin yıl sonra başladı. Rönesans'ın ve Reform hareketinin etkileriyle "niçin" sorusunun yerine "nasıl" sorusunun geçmesi, 16. yüzyıl içinde gündeme geldi.

Gallei'nin mekaniğe kat kılan, Kopernikusçuluğun savunulmasıyla doğrudan ilişkiliydi. Düşen cisimlerin hızlanmalanyla ilgilenen Galilei, serbest düşme yasasını, yani düşmede alınan yolun cismin kütlesiyle değil, geçen sürenin karesiyle orantılı olduğunu ortaya çıkardı. Bunu, eylemsizlik ilkesiyle birleştirerek, bir merminin yörüngesinin paraboli biçiminde olacağım belirledi. 17. yüzyılda RenĞ Descartes, özellikle madde kavramı üzerinde durarak doğadaki tüm olayları maddeye ve harekete indirgeyen mekanikçi felsefeyi kurdu. Ayrıca çarpma ve dairesel hareket üzerine çalışmalar da yaptı.

17.yüzyılın sonunda Isaac Newton, Philosophiae naturalis principia mathematica (1687; Doğa Felsefesinin Matematik İlkeleri) adlı yapıtında, mekaniğin temel sorunlarını çözen üç yasasını yayımladı. Bu yüzyılda hızla gelişen bir fizik dalı da optikti. Roger Bacon gibi'13. yüzyıl bilginlerinin yapıtlarını tarayan

Kepler,

teleskopların matematiksel incelemesini yaptı, mercekler için bir geometri kuramı geliştirdi, ışığın kırılma özelliğini açıkladı. Newton'ın beyaz ışığın bileşik ışık olduğunu ortaya çıkardığı renk kuramı ve ışığın parçacık özellikli olduğunu belirten korpüskül kuramı ile

Huygens'in dalga özellikli ışık kuramı optiğe en önemli katkılar oldu. Böyle, Torricelli, Pascal, Von Guericke gibi bilginler, gazların basınç ve hacim ilişkilerine nicel yasalar getirdiler.

18. ve 19. yüzyıllar bilimsel çalışmaların altın çağı olarak nitelenir. Değişen sosyoekonomik yapı var olan kuramlar içinde doğa biliminin en büyük atılımı yaparak bağımsız bir kurum halinde gelişmesine olanak sağladı.

Elektriğe ilişkin çalışmalar, Leyden şişesinde yük birikimi sağlanmasından sonra deneysel araştırma alanına kaydı. 1733'te du Fay ve Nollet, "reçinemsi" ve "camsı" olarak adlandırdıkları iki tür elektriktik olduğunu buldular, 1787'de de Coulomb, elektrostatiğin temel yasalarını yayımladı. Galvanik ve voltaik elektriğin bulunuşuyla elektrik üreteçlerinin doğuşu, bu alandaki araştırmaların hızla gelişmesini sağladı. 1819'da 0rsted, elektrik akımına eşlik eden magnetik etkiyi buldu, 1827'de Ampere elektrodinamiğin yasalarını geliştirdi. 1831'de ise Faraday elektromagnetik indük-siyonu ortaya çıkardı. 1855'ten başlayarak J. C. Maxwell'in çalışmalarıyla klasik elek-tromagnetizma kuramı ortaya çıktı.


Sanayi devriminin bilim üzerindeki en açık etkisi, ısının mekanik işe dönüştürülmesine yönelik çabalardır. Carnot, Clausius, Kelvin, Helmholtz gibi bilginler, termodinamik bilim dalının gelişmesinde önemli katkılarda bulundular. Maxwell ve Boltzmann gazların kinetik kuramım geliştirerek, maddenin atom yapısının tanımlanmasına yönelik çok önemli bir adım attılar. Işığın özellikleri ve esirin varlığına ilişkin olarak 19. yüzyıl sonunda gerçekleştirilen araştırmalar ise 20. yüzyılın devrimci kuramlarına temel oluşturdu.

20. yüzyılda fiziğin yapısını temelinden sarsan iki kuram,

Max Planck'ın 1900'de öne sürdüğü



kuvantum kuramı ile
Albert Einstein'ın 1905'te yayımladığı

görelilik kuramıdır. Atomun, çekirdeğin ve temel parçacıkların bulunması, plazma fiziği ve elektroniğin hızla gelişmesi gibi deneysel ve uygulamalı atılımlar, kuramsal ve deneysel bilgilerin olağanüstü artmasının yanı sıra, fiziğin çeşitli alanlarında gerçekleştirilen eşgüdümlü araştırmalarla sağlanmaktadır.

Kuantum Fiziğinin Öyküsü

 Kuantum Fiziğinin Öyküsü

 (hazırlayan: M.ABDULLAHOĞLU)

Kuantum teorisi, bilim tarihinin en çok kafa yorulan ve birçok hararetli tartışmaya konu olan teorilerinin başında gelir. Doğurduğu sonuçlar ise yalnız fizik bilimine değil birçok sanat akımına, sosyolojik teoriye ve değişik alanlara ilham kaynağı olmuştur. Kuantum teorisi kabaca bir atomun yörüngelerinde bulunan elektronların enerji seviyeleri arasındaki sıçrayışlardır. İlk bakışta herhangi bir fizik teorisinden farksız gibi gözükse de biraz derinlere indiğimizde aslında bu teorinin akıl almaz süreçlerden geçtiğini görürüz.
          20. yüzyılın başında J.J.Thomson elektron kavramını bularak, sonraki yıllarda Bohr tarafından son şekline kavuşturulacak olan atom teorilerinin en dikkate değer olanını tasarladı. Thomson’a göre elektronlar pozitif yüklü ortamlarda gömülü olarak bulunmaktaydlar (plum puding). Daha sonra Ernest Rutherford’un neredeyse atomun tüm kütlesini içeren atom çekirdeğini bulmasıyla atomun yapısı biraz olsun şekillenmeye başladı. Atom teorisine en son şekli Niels Bohr verdi. Bohr’a göre elektronlar, çekirdeğin çevresindeki enerji seviyelerinde bulunurlardı. Bu teoriye göre elektronlar cismin sıcaklığına bağlı olarak enerji seviyeleri arasında sıçramalar gerçekleştirerek radyasyon yayıyorlardı veya radyasyonu emiyorlardı. Bu dönemde, konuyla ilgili bilim adamları bir yandan atom teorisine son şeklini vermeye çalışırken bir yandan da Max Planc’ın “şanslı tahmin”ini tartışıyorlardı.
        1800’lerin sonlarında fizikteki en temel sorunlardan biri ısıtılan bir metalden nasıl ve neden radyant enerjinin yayıldığıydı(1). Gustav Kirchhoff’un “kara cisim radyasyonu” olarak bilinen deneyinin (bir cismin ısındıkça değişen radyasyon tayfını konu eden bir deney) grafiğini formule etmek bir çok fizikçiyi ciddi anlamda uğraştırdı. İlk yorum Lord Rayleigh’tan geldi ama onun sunduğu formüller sadece düşük frekanslar için geçerliydi. Sonrasında, Wilhelm Wien’in sundukları ise sadece yüksek frekanslarda işe yarıyordu.(2) . Bu sorunun üstesinden Max Planc, “şanslı tahmin” olarak da bilinen teorisiyle geldi. Daha önce radyasyonun kesintisiz bir dalga gibi olduğunu söyleyen bilimadamlarının aksine o, radyasyonun -bugün kuant dediğimiz- parçalardan oluştuğunu söyledi. Ulaştığı verilere aslında kendi bile inanmadı; sadece çözümsüz radyasyon frekanslarıyla ilgili grafikler hakkında doğru sonuçlar verdiği için bunun geçici bir cevap olarak tasarlandığını söyledi. Bu “çılgınca fikir” bilim camiasında hiç bir yankı bulmadı ve Einstein, Max Planc’ın tamamen doğru düşündüğünü söyleyene kadar da bu “çılgınca fikir” tarihin çöplüğünde unutulmaya yüz tutmuş bir vaziyette kaldı.

         Ve bilim tarihinin kaderini değiştiren dahi adam -Albert Einstein- sahneye çıktı. O zamana kadar ışığın dalga mı yoksa parçacık mı olduğunu tartışan bilim adamlarına “neden her ikisi de olmasın” diyen Einstein yepyeni bir alanı, kuantum mekaniğini, dünya bilimine kazandırmış oldu.
           Kuantumun gelişimi sancılı bir sürece sebep olmuştur. Öncelikle genç bir Fransız prensi olan Louie de Broglie, madde parçalarının da, örneğin elektronların, dalgalı ve parçalı olduğunu ileri sürdü. Daha açık bir deyişle, parçacıklar elektronlarla birlikte bir dalga hareketine sahipti.(3) Daha sonraları Alman fizikçi Werner Heisenberg, matris denilen diziler geliştirdi. Bu diziler kuantum hakkında birçok problemi çözmesine karşın pek çok bilim adamı tarafından tercih edilmediği için kullanılamadı ve haliyle teorisi de popülarite kazanamadı. Aynı yıllarda Erwin Schrödinger dalga denklemleri üzerine bir makale yayımladı. Differansiyel denklemlerle oluşturulmuş bu işlemler ilgi gördü; çünkü kolay anlaşılabilir olmasından dolayı bu denklemler bilim adamları tarafından tercih ediliyordu. Ancak sorun şuydu: ortada 2 tane birbirinden farklı teori vardı ve ikisi de problemler karşısında aynı sonuçları veriyordu. Kısa bir süre içinde, Schrödinger Heisenberg’in matrisleriyle kendi denklemlerini birleştirmeyi başardı ve her iki teorinin aslında aynı şeyleri öngördüğünü açıkladı.
            Daha sonra Heisenberg, kuantum teorisinin kaderini tamamen değiştirecek ve teoriyi fikir babasından (Einstein) tamamen soğutacak bir prensip ortaya attı. Bu prensip “belirsizlik ilkesi”ydi. Buna göre bir cismin konumu ve momenti, dolayısıyla enerjisi ve zamanı aynı anda ölçülemez. Bu prensibe göre atomal dünyadaki birçok şeyi aslında belirsizlikler belirler. Einstein bu yargıyı “Tanrı zar atmaz” diyerek şiddetle reddetmiş ve böylece kuantum teorisindeki önemli bir kutuplaşmanın ilk adımlarını atmıştır. Bu kutuplaşma daha sonraları iki büyük bilim adamı (Niels Bohr-Albert Einstein) arasında adeta bir söz düellosuna dönüşmüştür. Einstein kendi doğurduğu kuantum teorisini çürütmek için ortaya birçok paradoks atmasına karşılık Niels Bohr’un bunlara ustalıkla cevaplar bulması bu tartışmanın galibiyet ibresini “kuantumcu”lar lehine çevirmiştir.
         Schrödinger 1935 yılında “ Schrödinger’in kedisi” olarak bilinen ünlü paradoksunu ortaya atmıştır. Buna göre kedi, içinde radyoaktif parçacıkları bulabilen bir dedektör ve radyoaktif bir kaynak bulunan çelik bir kafese kilitlenir. Eğer dedektör radyoaktif bir parça bulursa, açığa çıkan zehirli gaz kediyi öldürür. Radyoaktif parçacığın bir dakika içideki emisyon olasılığı %50’dir. Kafesin biraz uzakta olduğunu düşünürsek radyoaktif kaynağını uzaktan açıp bir dakika bekleriz. Peki kedi bu bir dakikanın sonunda ölmüş mü olur yoksa hala hayatta mıdır? Aslında bunu gözlemleyene kadar ya da ölçene kadar kedi ne ölüdür ne de canlı. Bu sistem dalga fonksiyonu olarak tanımlanır ve dalga fonksiyonunu söndürene kadar kedi belirli bir durum kazanmaz (4). Einstein ve “kuantumcular” arasındaki bu tartışmaya 1965 yılında CERN fizikçilerinden John Bell yaptığı araştırmalar ve deneylerle “kuantumcular” lehine son noktayı koydu.
         Şu anda Kuantum mekaniği; lazer teorisinin, katı hal fiziğinin, nükleer fiziğin, parçacık fiziğinin, moleküler biyofiziğin ve bu bilimlerin etrafımızda görebileceğimiz tüm pratik kullanımlarının temelini oluşturmaktadır.(5) Ve hatta bu yazdıklarımı sizlerle paylaşabilmem bile kuantum fiziğinin bizlere sağladığı pratik kullanımların bir sonucudur. Bunun dışında lazer–maser teknolojisi, hayatımızın bir parçası haline gelen televizyonlar, mikrodalga fırınlar, dijital saatler vs. kuantumun hayatımızdaki en büyük etkileridir. Bundan sonra da kuantum mekaniği, farklı pratik kullanımlarla evrenimizi etkileyeceğe benziyor.

KAYNAKLAR:
1 Parker, Barry, ‘Kuvantumu Anlamak’, Güncel Yayıncılık, sayfa: 39, 2005.
 2 ibid, sayfa: 41.
3 Wynn, M Charles – Wiggins, W Arthur, ‘Yanlış Yönde Kuantum Sıçramalar’, TÜBİTAK Popüler Bilim Kitapları, sayfa: 18, 2005.
4 Cropper, William H., ‘Büyük Fizikçiler’, Oğlak Yayınları, sayfa: 330, 2004.
5 Parker, Barry, ‘Kuvantumu Anlamak’, Güncel Yayıncılık, sayfa: 15, 2005.